
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

fpgaConvNet: Mapping Regular and Irregular
Convolutional Neural Networks on FPGAs

Stylianos I. Venieris , Student Member, IEEE, and Christos-Savvas Bouganis, Senior Member, IEEE

Abstract— Since neural networks renaissance, convolutional
neural networks (ConvNets) have demonstrated a state-of-the-art
performance in several emerging artificial intelligence tasks. The
deployment of ConvNets in real-life applications requires power-
efficient designs that meet the application-level performance
needs. In this context, field-programmable gate arrays (FPGAs)
can provide a potential platform that can be tailored to
application-specific requirements. However, with the complexity
of ConvNet models increasing rapidly, the ConvNet-to-FPGA
design space becomes prohibitively large. This paper presents
fpgaConvNet, an end-to-end framework for the optimized map-
ping of ConvNets on FPGAs. The proposed framework comprises
an automated design methodology based on the synchronous
dataflow (SDF) paradigm and defines a set of SDF transfor-
mations in order to efficiently navigate the architectural design
space. By proposing a systematic multiobjective optimization
formulation, the presented framework is able to generate hard-
ware designs that are cooptimized for the ConvNet workload,
the target device, and the application’s performance metric
of interest. Quantitative evaluation shows that the proposed
methodology yields hardware designs that improve the perfor-
mance by up to 6.65× over highly optimized graphics processing
unit designs for the same power constraints and achieve up to
2.94× higher performance density compared with the state-of-
the-art FPGA-based ConvNet architectures.

Index Terms— Convolutional neural networks (ConvNets),
design space exploration (DSE), field-programmable gate arrays
(FPGAs), parallel reconfigurable architectures.

I. INTRODUCTION

IN RECENT years, convolutional neural networks
(ConvNets) have emerged as the state-of-the-art model

in several artificial intelligence tasks. From object and face
recognition [1], [2] to object detection and segmentation [3],
the predictive strength of ConvNets has led to their adoption
in a broad range of real-life applications. In both embedded
systems and data center setups, there is a common requirement
for fast, high-performance ConvNet deployment at low power
consumption. In this context, there is an increasing need for
efficient mappings of the inference stage of ConvNets on
computing platforms that can provide such a balance.

Apart from high predictive accuracy, ConvNets are
also characterized by challenging computational and

Manuscript received October 26, 2017; revised February 23, 2018 and
April 30, 2018; accepted May 31, 2018. (Corresponding author:
Stylianos I. Venieris.)

The authors are with the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London SW7 2AZ, U.K. (e-mail: stylianos.
venieris10@imperial.ac.uk; christos-savvas.bouganis@imperial.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2844093

Fig. 1. ConvNet models in the computation-memory space.

memory requirements. Fig. 1 shows a number of well-known
models in the computation-memory space, spanning from
the low-end LeNet-5 [4] up to the more recent large-scale
ResNet-152 image classifier [5]. To reach high accuracy,
one approach in a network design employs deep and wide
ConvNets with a large number of trainable parameters
in order to increase the expressive power of the model.
This design principle is depicted in models such as
VGG16 [1] which trades off higher inference accuracy with
substantially increased computational and memory intensity,
as demonstrated in the ImageNet Challenge [6]. Following
a different approach, recent models have been cooptimized
for both accuracy and computation leading to networks,
such as GoogLeNet [7], ResNet [5], and DenseNet [8]. Each
of these networks has reached similar or higher accuracy
compared with large networks at a lower computational
load. This was typically achieved by introducing novel
network components that differ from the conventional layer
types, which introduce irregular connectivity between layers.
The properties of irregularity and nonuniformity make
the dataflow of ConvNets more complex compared with
conventional models and challenge the existing mapping
methodologies. With inception-based, residual, and dense
networks becoming the state of the art in accuracy, there is
an increasing need for their optimized mapping in order to
deploy them broadly.

Until the middle of the previous decade, the conven-
tional computing infrastructure for ConvNets comprised
general-purpose machines, including multicore CPUs in server
environments and low-power microcontrollers in embedded
systems. The increased computational needs of ConvNet

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5181-6251

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

models together with the recent hardware advances led to
a shift toward customized hardware, with the prominence of
graphics processing units (GPUs) [9] and application-specific
integrated circuits (ASICs) [10]. Existing deep learning frame-
works, such as Caffe, Torch, and TensorFlow, provide high-
performance execution of ConvNets by employing power-
costly GPUs as their main acceleration platform. Farther in the
customization spectrum, ASIC chips offer ConvNet accelera-
tion with minimal power and area consumption. Nevertheless,
they require full-custom manufacturing at high nonrecurring
engineering cost. Moreover, the ASICs’ advantages typically
require the chip’s functionality to remain fixed after fabrication
and consequently lack the flexibility of mapping algorithmic
advances in the area of ConvNets, and cannot exploit model-
specific optimizations due to the fixed architecture.

In this context, reconfigurable hardware in the form of
field-programmable gate arrays (FPGAs) constitutes a promis-
ing alternative. FPGAs offer the benefits of customizability
and reconfigurability by means of a set of heterogeneous
resources, including lookup tables (LUTs), flip-flops (FFs),
block RAMs (BRAMs), and digital signal processing (DSP)
blocks, with programmable connections between them. These
properties allow an FPGA to reconfigure its fabric at run
time and, in this way, provide a hardware architecture tai-
lored for the target application. Because of their versatility,
big industrial companies, such as Microsoft and Amazon,
have redesigned their data center facilities in order to host
FPGAs on their servers and target a variety of workloads with
specialized hardware [11]. The FPGA mapping of ConvNets
could potentially provide tunable tradeoffs between critical
system parameters, including performance, power, and cost,
and serve as a useful component in both embedded and data
center systems.

Nevertheless, several issues increase the complexity of
ConvNet system development on FPGAs [12]. With FPGAs’
size and resource specifications advancing at a fast pace
and with ConvNets becoming more complex, the possible
mappings of a ConvNet on an FPGA lie on a large multidimen-
sional design space that cannot be explored manually. At the
same time, the diversity of ConvNet application domains
results in a wide spectrum of performance needs. Spanning
from high-throughput image recognizers to latency-critical
self-driving cars, the underlying computing system has to
be tailored to the particular performance metric of interest.
To this end, there is a need for tools that abstract the low-
level resource details of a particular FPGA and automate the
mapping of ConvNets on FPGAs in a principled manner.

This paper presents a novel approach to modeling and
mapping the inference task of both regular and irregular
ConvNets on FPGA-based platforms. By enhancing the
work presented in [13]–[15], we propose a synchronous
dataflow (SDF) framework for the modeling and mapping of
ConvNets on reconfigurable streaming hardware and introduce
a set of transformations over the SDF model in order to
efficiently explore the architectural design space and the
performance-resource tradeoff. The initial work in [13] focuses
on generating hardware designs optimized for high-throughput
applications, giving an overview of our SDF streaming

modeling scheme and evaluating over a set of relatively small
ConvNets targeting a low-power, low-end FPGA platform.
The work presented in [14] introduced a design methodology
tailored for emerging latency-sensitive applications. This paper
generalizes the framework in order to address the emerging
challenges of state-of-the-art ConvNets with irregular connec-
tivity, including GoogLeNet, ResNet-152, and DenseNet-161,
expands the range of target applications to include appli-
cations with both throughput and latency requirements by
casting design space exploration (DSE) as a multiobjective
optimization (MOO), provides, for the first time, an in-depth
analysis of the proposed modeling and DSE methods, and
presents extensive comparisons with highly optimized designs
on embedded GPUs and with the most recent state-of-the-art
FPGA designs.

II. BACKGROUND

A. Convolutional Neural Networks

A typical ConvNet comprises a sequence of layers, orga-
nized in two stages: the feature extractor and the classifier.
The three most commonly used types of layers for the feature
extractor are the convolutional layer, the nonlinear layer, and
the pooling layer, while the classifier typically includes fully
connected layers [16]. A convolutional layer operates as a
feature extraction mechanism, aiming to detect features in the
feature maps produced by the preceding layer. Computation-
ally, this is achieved by performing convolutions between Nin
input feature maps and the layer’s trainable (Kh ×Kw) kernels
which result in the production of Nout output feature maps.
Formally, this operation can be expressed as

f out
i =

Nin�

j=1

f in
j ∗ ki, j + bi , with i ∈ [1, Nout] (1)

where f out
i and f in

j are the i th and jth output and input
feature maps, respectively, ki, j is the (Kh × Kw) kernel that
corresponds to the i th output and jth input, and bi is the i th
bias vector. The ∗ operator represents the 2-D convolution
between a feature map and a kernel, which is computed by
sliding the (Kh × Kw) window of weights over the input
feature map.

A nonlinear layer operates as an activation function that
indicates whether a feature is present at each element of the
feature maps. A nonlinear function is applied elementwise on
the input feature maps with typical nonlinearities being the
sigmoid, tanh, and rectified linear unit (ReLU).1 A pooling
layer aims to introduce invariance in terms of spatial trans-
lation of features and downsample its inputs by sliding a
window over input feature maps and replacing with a summary
statistic, with the most common pooling operations being
average and max.

A fully connected layer performs the product between an
input vector and a weight matrix to produce an output vector.
The inputs to this layer that might be multidimensional are flat-
tened and arranged as a 1-D vector. With the feature extractor
typically dominating the computational cost of ConvNets [17]

1ReLU is defined as f (x) = max(0, x).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 3

and fully connected layer-based classifiers being abandoned
in the recent state-of-the-art models [5], [7], [8], [18], [19],
in this paper, we focus on the feature extractor stage.

B. State-of-the-Art ConvNets With Irregular Connectivity

Recently, novel ConvNet architectures have achieved a
higher accuracy by employing nonuniform layer connectivity.
Representative networks that have followed this approach
include GoogLeNet [7], ResNet [5], and DenseNet [8]. In con-
trast to prior work such as VGG16 that favored simplicity and
a uniform, serial layer connectivity, these types of networks
introduce novel compound blocks to increase the expressive
power of the model and reduce the computation requirements
at the expense of more complex dataflows that pose challenges
with respect to mapping.

1) Inception-Based Networks: In 2014, Szegedy et al. [7]
presented GoogLeNet as a network that achieves the state-of-
the-art accuracy without excessive computation. To achieve
this, GoogLeNet introduced the Inception module, which
substitutes the conventional single serial connection between
layers with four heterogeneous paths whose outputs are con-
catenated: three convolutional (1 × 1, 3 × 3, and 5 × 5) and
one 3 × 3 max-pooling path. Moreover, to limit the number
of weights, 1 × 1 filters are applied to reduce the number
of channels prior to the 3 × 3 and 5 × 5 convolutional
layers and after the pooling layer. Each path consists of a
different computational load and hence offers the opportunity
for mapping optimizations.

2) Residual Networks: In 2015, He et al. [5] set a new
record in the ImageNet accuracy by proposing ResNet.
This network architecture employs shortcut connections that
comprise forward connections between layers at different
depth levels. Instead of adding shortcuts between all the
layers, the network is organized as a series of residual
blocks. Computationally, inside a residual block, feature maps
are combined by elementwise addition before being fed
to the subsequent layer. Moreover, similar to GoogLeNet,
1 × 1 filters are employed in order to reduce the number of
weights. Overall, each residual block consists of three con-
volutional layers (1 × 1, 3 × 3, and 1 × 1). The ResNet with
152 layers (ResNet-152) demonstrated the highest accuracy on
ImageNet, requiring 23 GOp/input and 55 million weights.

3) Dense Networks: In 2017, DenseNet [8] introduced a
novel structure under the name dense block, as a mecha-
nism to achieve the accuracy level of ResNet at a lower
computational load. Inside a dense block, the output of each
layer is directly connected to the input of every following
layer in a feed-forward manner. Dense blocks are parameter-
ized with respect to: 1) the number of input feature maps;
2) its growth rate, which is defined as the number of output
feature maps that each convolutional layer produces, denoted
by k following the notation of [8]; and 3) the number of
convolutional layers inside the dense block. With this setting,
each convolutional layer of the block receives k more input
feature maps compared with its preceding layer. The DenseNet
with 161 layers (DenseNet-161) is achieved the same accuracy
level as ResNet-152 at a lower computational cost.

These three types of network architectures are currently
paving the way for higher accuracy and are employed as
a starting point for deploying ConvNets in new application
domains. Nevertheless, the large depth and the increased
connectivity complexity make the mapping of these models a
challenging task. To this end, we also target this set of models
and address the optimized mapping of their irregular dataflow
on FPGAs.

C. Synchronous Dataflow

The SDF [20] is a widely used model of computation for
the analysis and design of parallel systems. Under this scheme,
a hardware or software computing system is described as a
directed graph, named SDF graph (SDFG), with the nodes
representing computations and with arcs in place of data
streams between them. The basic principle of the SDF is
the data-driven streaming execution, where each node fires
whenever data are available at its incoming arcs. The charac-
teristic property that differentiates SDF from the conventional
dataflow is that the amount of data produced and consumed
by a node is known at compile time. This property enables
the construction of static schedules of execution for the target
system with finite and predictable amount of data buffering
between nodes, avoiding in this way the overhead of dynamic
control and enabling us to apply performance optimizations at
compile time.

III. RELATED WORK

With deep learning’s recent success, several research groups
have focused on the design of customized architectures for
ConvNets. Efforts have concentrated on hand-tuned mappings
of specific ConvNet models and computation engine opti-
mizations on FPGAs [21]–[24] and ASICs [25]–[28] and
memory subsystem optimizations on FPGAs [29], [30] and
ASICs [31]–[33]. GPU-based acceleration has also been
addressed from various aspects. Several libraries and frame-
works offer GPU implementations of ConvNet layers through
a high-level interface [34]–[37]. From a computational
perspective, recent works have explored the paralleliza-
tion of convolutions [38], the coarse-grain, batch-level
parallelism [39], and the vectorization of layers [40]. From
an algorithmic aspect, recent efforts have employed alterna-
tive algorithms to reduce the computational complexity of
convolutions [41]–[43]. Several strategies have been explored
to address the large memory requirements, including the
compression of trained weights [44] and data-layout trans-
formations [45]. Finally, the optimization of GPU designs
for latency-critical embedded applications has also been
investigated [27].

1) Design Space Exploration: Besides the above contribu-
tions, a significant research effort has been invested into the
development of systematic ConvNet-to-FPGA DSE method-
ologies. Zhang et al. [46] proposed a DSE method based
on the roofline model for the configuration of an accelerator,
targeting solely convolutional layers. The underlying architec-
ture consists of a fixed processing engine that is time-shared
between layers and can be configured at compile time with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the optimal configuration found by means of enumeration.
Suda et al. [47] presented a DSE scheme that considers all
layer types. Their proposed methodology focuses on high-
throughput applications that run on server-based FPGAs.
Without considering latency-sensitive applications, their target
objective is the maximization of throughput.

Wang et al. [48] developed a framework for the automatic
generation of ConvNet hardware implementations under the
name DeepBurning. Given a ConvNet, hardware components
are assembled to generate an accelerator. An emphasis is
given on the identification and implementation of appropriate
hardware components for neural networks without performing
systematic DSE as opposed to this paper. The generated
accelerators are designed to operate with a batch size of 1
and hence can target both high-throughput and low-latency
applications. DNNWEAVER [49] comprises an automated flow
for the generation of high-throughput accelerators for a given
ConvNet-FPGA pair. In its back end, DNNWEAVER employs
a set of parameterized hardware templates that correspond to
different types of layers. A heuristic search algorithm is used
to allocate FPGA resources to each template instance and
schedule the execution of layers. In [50], Escher is proposed
as a methodology for increasing the memory bandwidth uti-
lization of FPGA-based ConvNets, while Gokhale et al. [51]
designed a programmable accelerator optimized for the high
utilization of its resources. FP-DNN [52] and the convolu-
tional neural networks (CNN) register-transfer level (RTL)
Compiler [53] proposed RTL-level optimizations in order
to reach high performance and were the first work to tar-
get residual networks. Moreover, [54] and [55] presented
automated frameworks specifically tailored for FPGA-based
binarized and spiking neural networks, respectively, while [56]
proposed a library for the mapping of ConvNets on diverse
embedded platforms together with a comparative study of
their design spaces. Finally, [12] provides a detailed survey of
ConvNet-to-FPGA toolflows.

fpgaConvNet differs from existing efforts by proposing a
ConvNet-to-FPGA automated framework that combines sys-
tematic DSE with the generation of streaming accelerators that
are cooptimized for the ConvNet workload, the target FPGA,
and the application-level performance needs. In contrast to
the implementation-focused DeepBurning, fpgaConvNet’s key
contribution lies on formalizing and performing efficiently
the DSE task by means of the proposed SDF streaming
model. By taking into account the application performance
requirements, the generated design is optimized for either
throughput, latency, or multiobjective criteria, as opposed
to works [47], [49], [50], [52], [57] which aim solely
for throughput maximization. Finally, this paper is the first
ConvNet-to-FPGA framework to target all the three families
of Inception-based, residual, and dense networks.

IV. PROCESSING FLOW OVERVIEW

The proposed end-to-end framework aims to bridge the
gap between ConvNet models described in existing deep
learning software and their optimized deployment on FPGAs.
Fig. 2 shows a high-level view of the framework’s processing

Fig. 2. Overview of fpgaConvNet’s processing flow.

flow. Initially, the deep learning expert provides as inputs a
trained ConvNet model, expressed in Torch or Caffe, together
with the resources of the target FPGA. Next, the front-end
parser processes the inputs and populates a directed acyclic
graph (DAG) application model that captures the structure of
the input ConvNet and the resource constraints of the target
platform. As a next step, the DAG model is transformed
into an SDFG. At this point, the nodes of the SDFG cor-
respond to parameterized hardware building blocks and its
arcs to interconnections between them. By applying a set of
transformations over the SDFG, the optimizer modifies the
parameters of the building blocks and explores, in this manner,
the design space of different hardware mappings onto the
particular FPGA. As a final step, the code generator produces
the hardware description of the selected mapping, leading to
the generation of the actual hardware for the target device.

A. ConvNet Application Model

A ConvNet workload comprises a sequence of layers that is
captured in this paper by means of a computational DAG with
each layer mapped to a node. The target network is supplied
by means of a Torch or Caffe description, and the front-
end parser extracts the necessary information about the type,
configuration, and connectivity of layers in order to populate
the ConvNet application model.

By interpreting a ConvNet workload as a streaming appli-
cation, we model it as a DAG GConvNet = (V , E), with each
node v ∈ V corresponding to a layer. In order to unify the
representation of the ConvNet layers, we propose to capture
their configuration by means of a tuple of parameters. In this
manner, each node v ∈ V in the ConvNet is associated with
a layer-specific tuple. As an example, the convolutional layer
tuple is modeled as follows:

�Kh , Kw, Sh , Sw, P, N�
where Kh and Kw are the height and width of each filter,
Sh and Sw are the strides that determine the step between
successive windows along the feature map’s height and width,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 5

respectively, P is the zero padding of the input feature maps,
and N is the number of filters. The rest of the layers follow
the same modeling approach with the nonlinear layer defined
in terms of number of nonlinear units and type of nonlinear
function to be applied, e.g., sigmoid, tanh, or ReLU, and
the pooling layer defined in terms of pooling size, stride,
number of pooling units, and type of pooling operation,
e.g., max or average.

B. Target Platform Model

Beyond the ConvNet model, the deep learning expert also
provides the resource budget of the target FPGA platform.
The developed FPGA platform model comprises a set of para-
meters that capture information about the computational and
storage resources of the FPGA and the accompanying off-chip
memory subsystem. The FPGA contains a set of heterogeneous
resources that include DSP blocks, LUTs, FFs, and BRAMs.
The off-chip memory is typically a DDR SDRAM module that
is characterized by its bandwidth and capacity. To formally
represent the resources of the target platform, we define a
global resource set, R, that is the union of sets Rfpga and Rmem

Rfpga = {DSP, LUT, FF, BRAM}
Rmem = {Bmem, Cmem}

R = Rfpga ∪ Rmem. (2)

Moreover, a resource vector, r scAvail., is defined which holds
the available amount for each of the elements in R

r scAvail. = [DSPAvail., LU TAvail., F FAvail.,

BRAMAvail., Bmem, Cmem]� (3)

where Bmem and Cmem are the measured off-chip memory
bandwidth and capacity, respectively.

V. CONVNETS AS SDF GRAPHS

A key contribution of this paper is the representation of
hardware design points as SDFGs. At a hardware level,
fpgaConvNet represents design points as SDFGs that can
execute the input ConvNet workload. Given a ConvNet’s DAG
application model, each node is mapped to a sequence of
hardware building blocks that implement the node’s function-
ality. By assigning one SDF node to each building block,
an SDFG is formed. The nodes of the SDFG are connected
via arcs that carry data between building blocks. Each building
block is defined by a set of parameters that can be configured
at compile time. This process leads to the formation of a
hardware architecture that consists of a coarse pipeline of
building blocks and corresponds to a design point in the
architectural design space.

Fig. 3 shows the translation of a convolutional layer to
the corresponding SDF hardware graph. In this scenario,
a 2-D convolutional layer with N (K × K) filters is mapped
to three building blocks: a sliding window block, a fork
unit, and a convolution bank, together with the necessary
I/O modules, including memory read and write blocks. The
sliding window block receives the input feature maps as a
stream of elements and produces (K × K) windows. The fork

Fig. 3. Convolutional layer as an SDFG.

unit copies the windows to N parallel streams. The convolution
bank comprises N convolution units that each performs a dot
product between the incoming windows and a (K × K) kernel
of the convolutional layer.

Following the SDF theory, an SDFG can be represented
in a matrix form using a topology matrix, denoted by �.
Each column of the matrix represents an SDFG node, and
each row of the matrix represents an arc between two nodes.
The elements of each column hold the data production and
consumption rates of the particular node at the particular arc.
In a conventional SDF, an element �(a, n) is a positive or neg-
ative integer in the case when data are produced or consumed
by node n on arc a, respectively. The topology matrix of
the SDFG from Fig. 3 is shown in (4), where Bmem is the
measured memory bandwidth.

The proposed framework adopts the SDF paradigm and
enhances it with two extensions. The first extension is the
decomposition of the topology matrix into the Hadamard
product2 of three matrices. Each of the three matrices allows us
to analyze separately the parallelism at different granularities
and interpret the elements of the topology matrix in a deeper
manner. The first matrix is the streams matrix, denoted by S.
Each element of S is a nonnegative integer that holds the num-
ber of parallel streams at each arc. The second matrix is the
channels matrix, denoted by C . Each element of C holds the
width of each stream in words and has a positive or negative
sign that indicates the direction of the data flow. The third
matrix is the rates matrix, denoted by R. A value R(a, n)
is the normalized rate of data production or consumption per
cycle of node n on arc a and lies in the interval [0, 1]. A value
of 0 indicates no dataflow and 1 indicates a rate of 1 firing
per cycle. Following this decomposition, the topology matrix
of the SDFG can be reconstructed as follows:

� = S � C � R (5)

where � ∈ R
(M×N), S ∈ {0} ∪ Z

+(M×N) , C ∈ Z
(M×N) , and

R ∈ R
(M×N) for a design point with N building blocks

and M connections. As a second extension of SDF, the
topology matrix is allowed to contain real values in order to
accommodate the real-valued rates matrix R. All the three
matrices are upper bidiagonal with nonzero elements along
the main diagonal and the diagonal above it, leading to an
upper bidiagonal topology matrix. For the SDFG in Fig. 3,

2The Hadamard product, here denoted by �, is defined as the elementwise
multiplication between two matrices.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the streams, channels, and rate matrices would be as follows:

S =

⎡
⎢⎢⎣

1 1 0 0 0
0 1 1 0 0
0 0 N N 0
0 0 0 N 1

⎤
⎥⎥⎦

C =

⎡

⎢⎢⎣

Bmem −1 0 0 0
0 (K × K) −(K × K) 0 0
0 0 (K × K) −(K × K) 0
0 0 0 1 −Bmem

⎤

⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎣

1

2
1 0 0 0

0 1 1 0 0
0 0 1 1 0

0 0 0 1
1

2

⎤
⎥⎥⎥⎥⎥⎦

.

The � matrix representation offers several benefits: 1) it
captures in an analytical way how a local tuning impacts the
overall performance of the system; 2) it enables us to generate
a static schedule of all the operations; 3) determine the amount
of buffering between subsequent blocks at compile time; and
4) ensure the functional correctness of each design point by
calculating the data rates of each block.

A. ConvNet Hardware Building Blocks

Extending the idea of capturing ConvNet layers by means
of a tuple representation, we adopt a uniform representation
to model hardware building blocks. Each building block is
described by a tuple with the following template:

�param, sin, sout, cin, cout, rin, rout�
where param is a set of block-specific configuration parame-
ters, sin and sout are the number of parallel streams at the
input and output of the block, respectively, cin and cout are the
number of elements per stream at the input and output of the
block, respectively, rin is the consumption rate, which is inter-
preted as the initiation rate, in consumptions/cycle, and rout is
the production rate in productions/cycle. This parameterization
scheme allows us to concisely express different configurations
for each building block with potentially different performance-
resource characteristics. In this manner, fpgaConvNet is able to
leverage the SDF theory and its analytical power by tuning the
parameters of an SDFG’s building blocks in order to efficiently
explore the design space. As examples, the sliding window and
the convolution and pooling bank models are presented in the
following.

The sliding window block takes as input N streams with
elements from the input feature maps and outputs N streams
of (Kh × Kw) windows with strides of Sh and Sw along the
input feature maps’ height and width, respectively. Each input
feature map is automatically zero-padded with a pad size of P
in hardware. The sliding window block is represented as

	
{N, Kh , Kw, Sh , Sw, P}, N, N, 1, Kh × Kw, 1,

1

Sw

.

In convolution and pooling banks, each of the units performs
an operation, which reduces a window of size (Kh × Kw) to
a single value. For convolution banks (Fig. 4), the operation

Fig. 4. Convolutional layer mapped to building blocks.

of each of the N units is a dot product between the input
window and the corresponding weights. The input and output
rates depend on the folding factor of the units, denoted
by f . If f < 1, then the specified unit uses time-multiplexing
of its multiply–accumulate (MAC) resources to compute a
dot product. For pooling banks, two pooling operations are
supported: average and max pooling. In the case of average
pooling, dot product units are used with averaging kernels, and
therefore, the average pooling banks are configured similar
to convolution banks. In the case of max-pooling banks,
finding the maximum is performed with a single comparator
and f is equal to ((1)/((Kh × Kw))) with a single pixel being
consumed per cycle. The tuple representation is as follows:

�{N, Kh , Kw, f }, N, N, Kh × Kw, 1, f, f �.
The rest of the hardware blocks are defined in a similar manner
following the same modeling approach.

B. Modeling ConvNet Workloads

Complying with our interpretation of ConvNets as streaming
applications, ConvNet workloads are internally captured by
means of SDF. A ConvNet workload is represented as a stream
of data flowing through a sequence of building blocks. Each
building block consumes an amount of data at its consumption
rate and produces new ones at its production rate. By creating a
matrix whose columns hold the local workload at the input and
output of each building block in the architecture, a compact
and distributed representation of the computational workload
can be constructed. The amount of work, W in

i and W out
i ,

carried out by the i th hardware block is defined as the total
number of data elements to be consumed and produced by this
block, respectively, and it is expressed as

W {in, out}
i = F {in, out}

map,i · P{in, out}
i

where F {in, out}
map,i is the number of feature maps and P{in, out}

i
is the number of data elements per feature map at the
input or output of the i th block, respectively. To populate the
workload along the SDFG of building blocks, we introduce
the feature maps matrix, Fmap, and the data matrix, P , and
form the workload matrix, W , as shown in the following:

W = Fmap � P . (6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 7

Fig. 5. Convolution workload graph and matrix representation.

Fig. 6. Overview of streaming architecture.

As an example, the workload of a convolution between a
single (h × w) feature map and a single (3 × 3) kernel
would be represented in the following graph and matrix forms
(see Fig. 5), where the feature map is assumed to have
100 (3 × 3) windows. In this case, the feature maps and data
matrices would be populated as follows:

Fmap =

⎡
⎢⎢⎣

1 1 0 0 0
0 100 100 0 0
0 0 100 100 0
0 0 0 100 100

⎤
⎥⎥⎦

P =

⎡

⎢⎢⎣

h × w h × w 0 0 0
0 9 9 0 0
0 0 9 9 0
0 0 0 1 1

⎤

⎥⎥⎦ .

VI. ARCHITECTURAL DESIGN SPACE

In our framework, the basic hardware mapping of an SDFG
is a streaming architecture, as shown in Fig. 6. In this setting,
the design space is determined by the design parameters of
each instantiated block. The complete architectural design
space captured by our framework is formed by defining a set
of legal graph transformations for the manipulation of SDFGs.
The legality of a transformation is defined as the functional
equivalence of the graph before and after the transformation.
Four types of transformations are defined: graph partition-
ing with reconfiguration, coarse-grained folding, fine-grained
folding, and weights reloading.

A. Graph Partitioning With Reconfiguration

A direct hardware mapping of a given ConvNet assumes that
the on-chip computational and storage resources of the target
platform are able to accommodate it. In practice, the exploita-
tion of the inherent parallelism of the ConvNet can be lim-
ited by the target FPGA’s computational resources, namely,
the amount of LUTs and DSPs. Moreover, the on-chip storage

requirements can scale rapidly with an increase in either a
layer’s width or the ConvNet’s depth. In such scenarios, there
is an excessive amount of trained weights which may exceed
the available on-chip memory.

With the state-of-the-art ConvNet models reaching new
records in terms of depth [5], [8], dealing with large-scale
networks and their high resource demands becomes a crucial
factor. One of the most commonly used techniques in the
systems literature to deal with this issue is the design of a sin-
gle computation engine that is time-shared across layers [21].
Such a design comprises a single programmable accelerator
that is reused between layers and operates under the control
of software. This design approach fixes the architecture of
the accelerator, and let us the software perform the ConvNet
mapping by sending instructions to the accelerator. Despite
the flexibility gains due to software programmability, such a
design adds costly overheads by introducing inefficiencies due
to control mechanisms that resemble those of a processor [58]
and hence does not fully leverage the parallelism and cus-
tomization potential of each particular ConvNet.

Our proposed alternative to this problem exploits the recon-
figurability capabilities of FPGAs and introduces the partition-
ing of the ConvNet along its depth. In the graph partitioning
with reconfiguration transformation, the original SDFG is split
into several subgraphs. Each subgraph is mapped to a distinct
hardware architecture, specifically optimized for the particular
subgraph, which can utilize all of the FPGA resources. In each
subgraph, the on-chip memory is used for storing weights and
buffering feature maps between building blocks. Moreover,
the communication with the off-chip memory is minimized
and encompasses only the subgraph’s input and output streams.

The design parameter of this transformation is the selection
of the partition points of the input ConvNet. Given a ConvNet
with NL layers, there are NL − 1 candidate reconfiguration
points. We form a partitioning vector p ∈ {0, 1}NL−1, where
a value of 1 for the i th element indicates that the SDFG
will be partitioned at the i th layer. For a total of NP − 1
partition points, there are NP subgraphs, each one having its
own topology matrix and hardware design. More formally,
we define a topology tuple that contains one topology matrix
per subgraph

� = ��i | i ∈ [1, NP]�. (7)

Fig. 7 shows an example of a design point that includes
two partition points and effectively three architectures.
The ConvNet is partitioned after the pooling layers with
p = [0 1 0 1]�, leading to three subgraphs and a topology
tuple of < �1,�2,�3 >. Each subgraph is mapped to a
dedicated architecture, which is optimized specifically for the
subgraph’s workload. Between the execution of successive
subgraphs, the whole FPGA is reconfigured with the corre-
sponding design.

This approach requires the reconfiguration of the whole
FPGA whenever data have to enter a different subgraph
which adds a substantial time overhead. The reconfigura-
tion overhead can be amortized when batch processing is
employed with several inputs processed as a batch. With
this strategy, we introduce the design points that employ

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Example of graph partitioning with reconfiguration.

FPGA reconfiguration into the design space and expand the
design capabilities of FPGA-based ConvNet systems. As a
result, fpgaConvNet is able to employ this technique to provide
high-throughput mappings in scenarios where the latency of
a single input is not critical for the application and batch
processing can be tolerated.

B. Coarse- and Fine-Grained Folding

In ConvNet execution, high performance is mainly achieved
by exploiting two types of parallelism [29]. The first type is
the parallel execution of the coarse operations at each layer.
This includes the parallel execution of all the convolutions in
a convolutional layer, pooling operations in a pooling layer,
and nonlinearities in a nonlinear layer, and is equivalent to
the parallelism across output feature maps. In this context,
we define the coarse-grained folding of a layer by treating
the coarse unroll factor3 of each layer as a tunable parameter.

Formally, for an SDFG with NL layers, a coarse-grained
folding vector f coarse ∈ (0, 1]NL is defined with one folding
factor for each layer. More specifically, with reference to the
building block models presented in Section V-A, a convolu-
tional, pooling, or nonlinear layer with Nout output feature
maps is mapped to the corresponding bank block. The coarse-
grained folding is controlled by parameter N ∈ [1, Nout] of
the bank model, which corresponds to the actual number
of parallel units that will produce the Nout feature maps.
As a result, the folding factor of the i th layer f coarse(i)
lies in the range [((1)/(Nout)), 1] with 1 for a fully parallel
implementation and ((1)/(Nout)) for a single time-shared unit.

The second type of parallelism is the parallel execution
of multiplications and additions of the dot product opera-
tions inside the convolution and average pooling units. The
implementation of a dot product unit with inputs of size N
can span from a fully parallel implementation, with a stage
of N multipliers followed by an adder-tree with N − 1
adders, down to a single MAC unit. After the pipeline depth
has been filled, the first implementation yields a throughput
of 1 dot product/cycle. On the other end of the spectrum,

3The coarse unroll factor is defined as the number of parallel coarse units
for the execution of a layer.

Algorithm 1 Coarse-Grained Folding Transformation
Inputs:
1: Matrix �

2: Index i of the layer to be folded
3: Number of output feature maps Nout of the layer to be

folded
4: Folding factor, f ∈ [1

Nout
, 1]

Steps:
1: - Initialise folding vector, f coarse ∈ R

#cols�: f coarse = 1
2: - f coarse(i) = f
3: - Form the folding matrix, F = diag(f coarse)
4: - Apply the coarse-grained folding, S	 =
S · F�
5: - Form the folded topology matrix, �	 = S	 � C � R

Note:
·� is defined as the element-by-element ceiling
operator

Algorithm 2 Fine-Grained Folding Transformation
Inputs:
1: Matrix �

2: Index i of the layer to be folded
3: Kernel size K or pooling size P
4: Folding factor, f ∈ [1

K 2 , 1] or [1
P2 , 1]

Steps:
1: - Initialise folding vector, f f ine ∈ R

#cols�: f f ine = 1
2: - f f ine(i) = f
3: - Form the folding matrix, F = diag(f f ine)
4: - Apply the coarse-grained folding, R	 = R · F
5: - Apply the fine-grained folding, �	 = S �
C � R	�

Note:
·� is defined as the element-by-element ceiling
operator

the throughput is (1/N) dot products/cycle with approxi-
mately N times fewer resources. We define the parameteri-
zation over the unroll factor of dot product units as the fine-
grained folding of a layer. Overall, the design parameters of
the two folding transformations are the elements of the folding
vectors f coarse and f fine. An illustration of the coarse- and
fine-grained folding factors for a convolutional layer is shown
in Fig. 4.

Our adoption of the SDF paradigm allows us to employ
linear algebra to express these transformations. The coarse-
and fine-grained folding transformations are applied directly
on the topology matrix � by means of the two folding
vectors as described by algorithms (1) and (2), respectively.
The coarse-grained folding operates on the streams matrix S
and the fine-grained folding operates on the rates matrix R.
Algorithm (1) takes as inputs matrix � of the given SDFG,
the index i of the layer to be folded, the parameter Nout of
the layer, and the selected folding factor f . On lines 1 and 2,
the folding vector is initialized to a vector of ones with NL

elements, where NL is equal to the number of columns of �,
and the i th element is set to the selected folding factor.
Next, on lines 3 and 4, a folding matrix is constructed with
f coarse along its diagonal, and it is used to right-multiply
matrix S. Finally, the folded topology matrix �	 is produced

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 9

Fig. 8. Example of the weights reloading transformation.

following (5). A similar procedure is followed for the fine-
grained folding, as shown in algorithm (2), where the rates
matrix R is affected on line 4 in place of S.

C. Weights Reloading

So far, the presented transformations yield a design space
that is appropriate for high-throughput applications. The graph
partitioning with reconfiguration transformation enables the
generation of a distinct architecture for each subgraph, with
each architecture further tailored to the workload of its
subgraph using coarse- and fine-grained folding. In high-
throughput applications that allow batch processing, grouping
the inputs in large enough batches spreads the FPGA reconfig-
uration time cost across the batch. This approach enables the
amortization of the FPGA reconfiguration and can effectively
lead to high throughput. However, the latency of a single
input remains substantially deteriorated. In order to surpass
this limitation and target low-latency applications, the weights
reloading transformation is introduced.

The weights reloading transformation aims to address two
issues: 1) to provide a mechanism for the execution of several
subgraphs without the latency penalty due to FPGA reconfigu-
ration and 2) to enable the targeting of layers with weights that
exceed the FPGA on-chip memory capacity, which is handled
by input feature maps folding, as detailed in Section VI-C1.
Similar to graph partitioning with reconfiguration, this trans-
formation partitions a given SDFG into several subgraphs
along its depth. However, instead of generating a distinct
architecture for each subgraph, a single flexible architecture
is derived that can execute the workloads of all the resulted
subgraphs by operating in different modes.

Fig. 8 shows a typical operation of the weights reloading
transformation. In this scenario, the SDFG on the left is parti-
tioned into three subgraphs. Each subgraph has its own trained
weights for its convolutional layer. A reference architecture
is derived based on the layer patterns of the subgraphs as
detailed in Section VI-C2, and each subgraph’s workload is
scheduled for execution. Moreover, reloading of weights from
the off-chip memory is performed between the executions of
successive subgraphs. After the reference architecture has been
derived, the hardware design is further tuned by means of

Fig. 9. Example of applying input feature maps folding (assuming
16-bit fixed-point precision for weights).

the coarse- and fine-grained folding transformations. These
two transformations are employed to holistically optimize the
design across the workloads of all the scheduled subgraphs.

The weights reloading transformation enables the execu-
tion of latency-critical applications and expands the design
space with design points that resemble flexible programmable
processors. The primary differentiating factor of our approach
from existing programmable processors with a fixed architec-
ture, such as [59], is that the reference design is formed based
on the layer patterns of the input ConvNet, which avoids the
overheads of a generic architecture. After the reference design
has been derived, the rest of the transformations are utilized
for further cross-subgraph optimization of the hardware.

1) Input Feature Maps Folding: The memory requirements
for the weights of even a single convolutional layer can exceed
the on-chip memory capacity of the target device. In such
scenarios, ConvNets would become bounded by the limited
on-chip memory. To address this issue and accommodate
ConvNets with a large amount of weights, an additional design
parameter is introduced in the form of an input feature maps
folding factor, coupled to the weights reloading transforma-
tion. One input feature maps folding factor fin ∈ [1, Nin]
is associated with each convolutional layer in a subgraph.
Depending on the value of the folding factor, a convolutional
layer with Nin input and Nout output feature maps is divided
into NW subgraphs that perform a fraction of the convolutions,
where NW = fin. For a factor of fin, each of the NW subgraphs
performs (Nin/ fin)Nout convolutions and computes Nout inter-
mediate convolution results. After all the NW subgraphs have
been executed, the intermediate results are accumulated in
order to produce the output feature maps.

Fig. 9 shows an instance of a convolutional layer with
256 input and output feature maps. By applying input feature
maps folding with a factor of 4, each subgraph is responsible
for 64 input feature maps and produces 256 intermediate
feature maps with the final accumulation subgraph summing
them to produce the output feature maps. With this technique,
the on-chip memory footprint at any instant is reduced by
a factor of 4, at the expense of having to load the next
set of weights from the off-chip memory between successive
subgraphs.

2) Reference Architecture Derivation: After the weights
reloading partition points have been selected, a single, flexible
reference architecture is derived that is able to execute all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the subgraphs. The requirements of the derived architecture
are: 1) the capability of executing the layer patterns that are
present in any of the subgraphs and 2) run-time flexibility with
respect to its data path so that no FPGA reconfiguration will
be required.

The reference architecture derivation is cast as a pattern
matching problem. As a first step, the SDFG is partitioned
into NW subgraphs based on the selected partition points. The
sequence of hardware layers of each subgraph is interpreted
as a pattern. The elements of the patterns are drawn from
the set of supported layers. The reference architecture is
initialized with the deepest subgraph as a starting point and
is refined by looping over the patterns of the rest of the
subgraphs and searching for the occurrence of each pattern
in the reference architecture. Each pattern occurs with a shift
s if 0 ≤ s ≤ len(ref) − len(pattern), where len(·) returns
the depth of its input. In the case when a pattern does not
occur, the missing pattern is added at the end of the reference
architecture’s pipeline.

By the end of this process, a reference architecture has
been formed, which can execute the workloads of all the
subgraphs. Flexibility with respect to data path is introduced
by means of run-time configurable interconnections among
the instantiated building blocks. This flexibility allows the
architecture to process the workloads of different subgraphs
by forming the appropriate data path based on the current
subgraph’s index without the need for FPGA reconfiguration.

After the formation of the reference architecture, each node
of each subgraph is mapped and scheduled on the appropriate
building block. The convolution and pooling units are instan-
tiated so that they support the processing of windows of the
maximum size that has been scheduled on them, with zero-
padding used for smaller windows. As a final step, the coarse-
and fine-grained folding transformations are used to further
optimize the design in a holistic manner by considering the
workloads of all the scheduled subgraphs.

The design parameters of this transformation are the selec-
tion of the partition points and the input feature maps folding
factors of each convolutional layer. To capture the partition-
ing points, we form a vector pCONV ∈ {0, 1}NCONV−1. The
weights reloading transformation is applied after the initial
partitioning of the input ConvNet into NP subgraphs by
the graph partitioning with reconfiguration transformation.
Weights reloading further partitions each of the subgraphs,
leading to NWi subgraphs mapped to the i th reference architec-
ture, with i ∈ [1, NP]. Moreover, for a ConvNet with NCONV
convolutional layers, there are NCONV input feature maps
folding factors to be selected, i.e., fin,i with i ∈ [1, NCONV],
organized in a vector f in ∈ [1, Nin,i]NCONV .

3) Workload Alignment: In the weights reloading transfor-
mation, when a workload subgraph is mapped to a reference
architecture, its nodes have to be scheduled for execution
on the instantiated building blocks. Given the i th reference
architecture and the j th workload subgraph with N and L
building blocks, respectively, we have a topology matrix
�i,ref ∈ R

(M×N) and a workload matrix W i, j ∈ Z
(K×L) with

K ≤ M and L ≤ N . Fig. 10 shows an instance where the
workload has to be aligned to the reference architecture.

Fig. 10. Workload to be mapped on a reference architecture.

In this case, the workload consists of two convolutional layers,
with the first layer mapped directly to the CONV1 block.
However, the second layer has to be scheduled on block
CONV2. At a matrix level, this corresponds to an alignment of
the columns of the workload matrix that represent the second
layer with the columns of the topology matrix that represent
the CONV2 block. In order to estimate the execution time
of the j th subgraph by the i th reference architecture, it is
necessary that the columns of W i, j are aligned to the correct
columns of �i,ref. This process can be interpreted as forming
the correct data path for the j th subgraph by scheduling each
node on the appropriate block of the reference architecture.
To smoothly integrate the weights reloading transformation to
our SDF streaming model, we introduce an analytical method
for applying the weights alignment.

This is achieved by forming a matrix W aligned
i, j ∈ Z

(M×N)

that contains the rows and columns of W i, j with the correct
alignment. Following our SDF model, the workload align-
ment operation is expressed algebraically, as described by
algorithm (3). During the reference architecture derivation
task, the necessary alignment shifts for each column of the
workload matrices have been calculated and stored in the
shift vector si, j for the j th workload of the i th reference
architecture, which can be seen on line 3 of the inputs list.
The algorithm starts with the initialization of Waligned

i, j with a
zero-padded version of W i, j to match the size of �i,ref. The
loop on line 2 iterates through the columns of the jth workload
matrix that need alignment. In the main body of the loop,
lines 3–8 shift the current column to the right, i.e., along the
coarse pipeline of building blocks in the reference architecture.
Next, lines 9–14 downshift the column in order to align the
interconnections. After the end of the loop, Waligned

i, j has been
fully constructed and the j th initiation interval matrix can be
computed correctly as I I i, j = Waligned

i, j �i,ref and used to
calculate ti, j (B,�i,ref, W i, j), as described in Section VII-A.
As a result, the weights reloading transformation can be
applied analytically and integrated to the performance model.

D. Optimizations for State-of-the-Art Irregular Models

To address the ConvNet families of Inception, residual,
and dense networks, we extend our framework at two levels.
At a modeling level, we extend our SDF model and construct
the topology matrix so that it captures multiple connections
from one hardware building block to many. This allows us to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 11

Fig. 11. Dedicated hardware blocks for Inception-based, residual, and dense networks. (a) Multipath hardware Inception block. (b) Hardware residual block
with an elementwise adder. (c) Hardware dense block with input feature maps unrolling.

Algorithm 3 Workload Alignment for Weights Reloading
Inputs:
1: Dimensions (M × N) of topology matrix �i,re f

2: Workload matrix W i, j ∈ R
K×L

3: Shift vector si, j ∈ Z
L with the alignment shifts for each

column
4: Identity matrices Ir

N×N and I l
M×M

5: Lower shift matrices Sr
N×N and Sl

M×M

Steps:

1: Waligned
i, j =

�
W i, j

0(M−K)×L
, 0M×(N−L)

�

2: for all col in the j th subgraph that need alignment do
3: - - - Align along the pipeline (right shift) - - -
4: - Form right alignment matrix Ar ∈ R

N×N -

5: Ar =
�

Ir
1:col−1, Sr

col:col+si, j
col

, I r
col+si, j

col+1:N

�

6: - Update the overall right alignment matrix -
7: Ar

o = Ar · Ar · · · · · Ar
 �� �

si, j
col

8: Waligned
i, j = W aligned

i, j · Ar�
o

9: - - - Align the interconnections (down shift) - - -
10: - Form left alignment matrix Al ∈ R

M×M -

11: Al =
�

I l
1:col−2, Sl

col−1:col+si, j
col−1

, I l
col+si, j

col :M

�

12: - Update the overall left alignment matrix -
13: Al

o = Al · Al · · · · · Al
 �� �

si, j
col

14: Waligned

i, j,col:col+si, j
col

= Al
o · Waligned

i, j,col:col+si, j
col

15: end for
Note: The subscript star t:end denotes a range of columns.

represent analytically the multiple paths and their workloads
inside the Inception, residual, and dense blocks. An Inception
module is represented by means of a tuple as follows:

�
hin, win, Nin, N {1,2,3,4}

out , N {1,2,3,4,5,6}
f , r

�
(8)

where hin, win, and Nin are the height, width, and number
of input feature maps, Ni

out is the number of output feature
maps from the i th path, Ni

f is the number of filters in the

i th convolutional layer, and r is the repetitions of the module.
The residual block is captured as follows:

�
hin, win, Nin, N {1,2,3}

f , r
�

(9)

where Ni
f is the number of filters in the i th convolutional

layer. Finally, dense blocks are captured as follows:
�
hin, win, Nin, N {1,2}

f , r, k
�

(10)

where k is the growth rate that is the number of output feature
maps of each convolutional layer in a dense block.

At a hardware level, we design one custom coarse hardware
block for each network family that follows the structure of the
corresponding novel component.

1) Inception Block: The Inception block [Fig. 11(a)] is
parameterized with respect to the coarse-grained folding of
each convolutional and pooling layer and the fine-grained
folding of the 3 × 3 and 5 × 5 convolutional layers, leading to
the combined parameter vector f inception ∈ (0, 1]9. Moreover,
input feature maps folding is defined for the convolutional
layers in order to address cases where the weights storage
requirements exceed the available on-chip memory.

2) Residual Block: ResNets introduce shortcut connections
between layers and combine feature maps by means of elemen-
twise addition. To support this structure, we define a new ele-
mentwise addition hardware building block and parameterize
it with respect to its coarse-grained folding. Fig. 11(b) shows
the overall residual block. Its input consists of an optional
adder array that implements the shortcut connections, while
the rest of the architecture comprises two 1 × 1 convolutional
layers with a 3 × 3 layer between them. The configuration of
the residual block is captured with a vector f residual ∈ (0, 1]5

with one fine-grained and four coarse-grained folding factors.
3) Dense Block: In DenseNet, a dense block consists of a

series of 1 × 1 followed by 3 × 3 convolutional layers. Our
proposed hardware dense block comprises the direct mapping
of the two layers to hardware with the coarse-grained folding
of both and the fine-grained folding of the 3 × 3 layer as
compile-time parameters. Dense blocks have the property of
increasing the number of input feature maps by the growth rate
k at each iteration while keeping the number of output feature
maps constant and equal to the growth rate. In this respect,
the parallelism of the output feature maps remains constant

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

along the dense block, while the input feature maps parallelism
increases. With reference to tuple (10), inside a dense block,
each 3×3 layer produces k output feature maps, while the i th
repetition of (1 × 1 and 3 × 3) receives Nin + (i − 1)k input
feature maps with i ∈ [1, r]. To exploit this property, we define
a DenseNet-specific optimization and extend the dense block
with an additional parameter that unrolls the 1 × 1 layer with
respect to its input feature maps [Fig. 11(c)]. This approach
allows us to sustain high utilization of the FPGA resources
as the number of input feature maps increases inside a dense
block. The configuration of the dense block is represented with
a vector f dense ∈ (0, 1]4 that includes one fine-grained folding,
two coarse-grained folding, and one input unrolling factors.

Overall, the configuration parameters of the blocks are
exposed to the SDF transformations in order to tailor the
custom blocks to the workload of the target Inception module,
residual block, and dense block.

VII. DESIGN SPACE EXPLORATION

Based on the parameterization of the SDF transformations
and the hardware building blocks, fpgaConvNet defines a par-
ticular architectural design space. An analytical performance
model has been developed as an estimator of the throughput
and latency of each design point. The DSE task is cast
as a constrained optimization problem with the objective to
optimize the performance metric of interest. The design space
is traversed by means of the SDF transformations until a
design point is obtained that optimizes the target objective.

A. Performance Model

Given the topology matrix � of a design point and the
workload matrix W of a ConvNet, the initiation interval
matrix I I is formed as follows:

I I = W � (11)

where denotes the Hadamard elementwise division. Each
element of I I gives the number of cycles required by each
hardware block along the pipeline to consume its workload.
The block with the longest initiation interval determines the
initiation interval of the whole SDFG and is given by the
maximum element of I I , denoted by I I max.

For the ConvNet inference over a batch of B inputs,
the execution time for a single subgraph is estimated as

t (B,�, W) = 1

clock rate
· (D + I I max · (B − 1)) (12)

where D is the maximum between the size of the input, e.g.,
the number of pixels of an image, and the pipeline depth of
the current hardware design.

Graph partitioning with reconfiguration determines the num-
ber of distinct architectures of a design point. For NP parti-
tions, there are NP architectures where the i th architecture
is associated with its �i and W i matrices. Furthermore,
the weights reloading transformation partitions W i into NWi

workload subgraphs, indexed by j . Each of the NWi subgraphs
will be scheduled for execution on a single derived architecture
represented by �i,ref. To support design points that employ

these two transformations, each design point is expressed by a
topology tuple � as defined in (7), and similarly, the workload
matrix W is replaced by a tuple defined as follows:

W = �W i, j | i ∈ [1, NP], j ∈ [1, NWi]� (13)

We extend the execution time notation with ti, j in order to
capture the execution time of the j th workload subgraph on
the i th architecture. Moreover, between successive subgraphs,
the weights transfer time from the off-chip to the on-chip
memory of the j th workload subgraph of the i th architecture
has to be included and is denoted by ti, j,weights. The weights
transfer time is estimated using the amount of weights in the
subgraph and the allocated bandwidth of the target platform.
Moreover, between consecutive architectures, the reconfigura-
tion time, ti,recon fig., has to be included. With this formulation,
the overall execution time is expressed as

ttotal(B, �, W) =
NP�

i=1

NWi�

j=1

ti, j (B,�i,ref, W i, j)

+
NP�

i=1

NWi�

j=1

ti, j,weights +
NP −1�

i=1

ti,reconfig.

The above expression indicates that the reconfiguration and
weights reloading time are independent of the batch size, B .
Therefore, by increasing the batch size, the first term domi-
nates the execution time and the reconfiguration and weights
reloading overheads are amortized. In practice, the value of B
is limited by the capacity Cmem of the off-chip memory and
the latency tolerance of the application. Given a ConvNet that
requires a total of WConvNet GOps/input, the throughput and
latency of a design point can be estimated as in (14) and (15)
in GOp/s and seconds, respectively

T (B, �, W) = WConvNet

ttotal(B, �, W)/B
(14)

L(B = 1, �, W) = ttotal(1, �, W). (15)

B. Resource Consumption Model

The primary factor that constrains the ConvNet mapping
on a particular platform is the available resources. Each can-
didate design point has a corresponding resource consumption.
We define the feasible space of our model as the set of design
points that satisfy all the platform-specific resource constraints.
To estimate the FPGA resource utilization of a design point,
we construct an empirical model based on place-and-route
results. To this end, we use a set of LUTs, FFs, DSP blocks,
and BRAMs measurements for each hardware building block
and fit linear regression models as a function of their tunable
parameters, leading to a set of predictive resource models.

C. Optimization Framework

Our SDF modeling framework allows us to formulate the
DSE task as a constrained combinatorial optimization problem.
Three distinct optimization problems are formed, which differ

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 13

in terms of objective function and constraints based on the
performance metric of interest

max
�

T (B, �, W), s.t. r sc(B, �) ≤ r scAvail. (16)

min
�

L(1, �, W), s.t. r sc(1, �) ≤ r scAvail. (17)

max
�

T (B, �, W), s.t. r sc(B, �) ≤ r scAvail. (18)

L(1, �, W) ≤ �

where T , L, r sc, and � are the throughput in GOp/s,
the latency in s/input, the resource consumption vector of
the current design point and the upper bound on the latency,
respectively, and r scAvail. is the resource vector of the target
platform. The objective function aims to either: 1) maxi-
mize throughput [see (16)]; 2) minimize latency [see (17)];
or 3) perform an MOO which maximizes throughput with a
latency constraint [see (18)].

Given an input ConvNet, the optimization problems are
defined over the set of all design points S in the design
space presented in Section VI, and the objective functions
T : S → R

+ and L : S → R
+ can be evaluated for all s ∈ S

given the performance model of Section VII-A. In theory,
the optimal design point could be obtained by means of an
exhaustive search with a complete enumeration. The total
number of design points to be explored, given all four trans-
formations can be calculated as shown in the following:

2NL−1 · 2NCONV−1 ·
NCONV�

i=1

Nreload,i ·
NL�

i=1

Ncoarse,i ·
NL�

i=1

Nfine,i

where NL is the number of layers, NCONV is the number
of convolutional layers, Nreload,i is the number of possible
input feature maps folding factors for the i th convolutional
layer, and Ncoarse,i and Nfine,i are the number of possible
coarse- and fine-grained folding factors for the i th layer,
respectively. With an increase in either the depth or width of
a ConvNet’s layer, brute-force enumeration quickly becomes
computationally intractable. Therefore, a heuristic method is
adopted to obtain a solution in the nonconvex space.

In this paper, simulated annealing [60] has been selected as
the basis of the developed optimizer. The SDF transformations,
defined in Section VI, are formalized as a set of operations �
and the neighborhood N(s, σ) of a design point s is defined as
the set of design points that can be reached from s by applying
one of the operations σ ∈ �. The optimizer traverses the
design space by considering all the described transformations
and converges to a solution of the objective function, selected
from (16)–(18).

The MOO problem of (18) involves a reduction to a
single objective by means of an �-constraint formulation. This
approach incorporates the application-specific importance of
throughput and latency prior to optimization and is solved
by the developed simulated annealing optimizer. Alternatively,
other methods, such as genetic algorithms, can be employed
to solve the MOO problem [61]. Such an optimization engine
would first search the design space and generate a set of design
points lying on the throughput-latency Pareto front of the target
ConvNet-FPGA pair. As a second step, the application-specific
throughput and latency requirements would be considered

TABLE I

FPGA PLATFORMS

TABLE II

BENCHMARKS

a posteriori to select the highest performing design from the
generated solution set.

VIII. EVALUATION

A. Experimental Setup

In our experiments, we target two FPGA platforms
with different resource characteristics (Table I): Avnet’s
ZedBoard mounting the low-end Zynq 7020 and the Xilinx’s
ZC706 board mounting the larger Zynq 7045. Both platforms
are based on the Xilinx Zynq-7000 System-on-Chip which
integrates a dual-core ARM Cortex A9 CPU alongside an
FPGA fabric on the same chip. Our framework uses the SDFG
of each hardware design to automatically generate synthe-
sizable Vivado HLS code. All hardware designs were syn-
thesized and placed-and-routed with Xilinx’s Vivado Design
Suite (v17.2) and run on ZedBoard and ZC706 board with
an operating frequency of 125 MHz. The achieved clock rate
is currently limited by the technology of the target device
and the use of HLS, which relies on the vendor’s toolchain
and does not allow for low-level optimizations to overcome
critical path issues. The ARM CPU was used to measure the
performance of each design. fpgaConvNet provides support
for custom fixed-point as well as floating-point precision. For
the evaluation, Q8.8 16-bit fixed-point precision was used
following the practice of the FPGA works we compare with.
Moreover, research on the precision requirements of ConvNet
inference [23] has shown Q8.8 to give similar results to
32-bit floating point.

1) Benchmarks: Table II lists our benchmark models. Each
ConvNet consists of a feature extractor and has a different
number of layers, computation, and memory requirements, and
has been selected to pose a different design challenge. AlexNet
comprises nonuniform kernel sizes across its convolutional
layers, including 11×11, 5×5, and 3×3 kernels. VGG16 is one
of the largest and more computationally intensive ConvNets,
whose pretrained feature extractor is extensively used as
a building block in new application domains [62]. Finally,
GoogLeNet, ResNet-152, and DenseNet-161 represent the
mainstream networks that contain novel complex components
and challenge the mapping by having irregular dataflow.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

With the evaluation of the performance model’s accu-
racy with respect to the real measured performance
presented in [13] and [14], the rest of this section focuses
on the comparison with: 1) highly optimized designs targeting
an embedded GPU and 2) state-of-the-art ConvNet designs
on FPGAs.

B. Comparison With Embedded GPU

With the majority of ConvNets being deployed for inference
in embedded systems, our evaluation focuses on the embedded
space. In power-constrained applications, the main metrics of
interest comprise: 1) the absolute power consumption and
2) the performance efficiency in terms of performance per
watt. In this respect, we investigate the performance efficiency
of fpgaConvNet designs on Zynq 7045, which is an industry
standard for FPGA-based embedded systems, in relation to the
widely used high-performance NVIDIA Tegra X1 platform.

For the performance evaluation on Tegra X1, we use
NVIDIA TensorRT as supplied by the JetPack 3.1 package.
TensorRT is run with the NVIDIA cuDNN library and
FP16 precision, which enables the highly optimized execution
of layers. Across all the platforms, each ConvNet is run
100 times to obtain the average throughput and latency.
Furthermore, power measurements for the GPU and FPGAs
are obtained via a power monitor on the corresponding board.
In all cases, we subtract the average idle power4 from the
measurement to obtain the power due to the benchmark
execution.

1) Throughput-Driven Applications: In throughput-driven
applications, multiple inputs can be processed as a batch
to increase the overall throughput. For these scenarios, our
framework utilizes the throughput-driven objective function
[see (16)] during DSE. On all evaluated platforms, each
benchmark is run with a favorable batch size in order to reach
peak throughput.

2) Latency-Driven Applications: In latency-driven scenar-
ios, batch processing is not an option, and hence, the applica-
tion performance is determined by how fast a single input is
processed. In this case, our framework employs the latency-
driven objective function [see (17)] during DSE in order to
generate low-latency accelerators. On all evaluated platforms,
the benchmarks are run with a batch size of 1.

3) Discussion: Tegra X1 mounts a 256-core GPU with
native support for FP16 half-precision floating-point arithmetic
which can be configured with a range of frequencies up to
998 MHz at a peak power consumption of 15 W. To investigate
the performance of each platform under the same absolute
power constraints that would be present in an embedded
setting, we configure the frequency of the GPU with 76.8 MHz
and the target Zynq 7045 FPGA at 125 MHz for the same bud-
get of 5 W. For throughput-driven applications, fpgaConvNet
achieves a throughput improvement over Tegra X1 of up to
5.53× with an average of 3.32× (3.07× geo. mean) across
the benchmarks. For latency-driven scenarios, fpgaConvNet
demonstrates a throughput improvement of up to 6.65× with
an average of 3.95× (3.43× geo. mean).

4Idle Power: Tegra X1 (5 W), ZedBoard (5 W), and ZC706 (7 W).

Fig. 12. Power-performance space for fpgaConvNet’s Zynq 7045 and
Tegra X1 designs clocked at 76.8, 537.6, and 998 MHz (high-throughput
designs with batching). For the same power budget (5 W), fpgaConvNet
achieves 3.07× (geo. mean) higher performance across the benchmark
ConvNets.

Fig. 13. Power-performance space for fpgaConvNet’s Zynq 7045 and
Tegra X1 designs clocked at 76.8, 537.6, and 998 MHz (low-latency designs
with a batch size of 1). For the same power budget (5 W), fpgaConvNet
achieves 3.43× (geo. mean) higher performance across the benchmark
ConvNets.

To evaluate the performance efficiency in terms of per-
formance per watt, we configure the GPU with the peak
rate of 998 MHz. In this setting, fpgaConvNet achieves
an average of 1.17× (1.12× geo. mean) improvement in
GOp/s/W over Tegra X1 for throughput-driven applications
and 1.70× (1.36× geo. mean) for latency-driven applica-
tions. Figs. 12 and 13 show the measured power-performance
space on Tegra X1 with different frequency configurations
(76.8, 537.6, and 998 MHz) and Zynq 7045 at 125 MHz
for throughput-driven and latency-driven applications, respec-
tively. Based on the presented evaluation, fpgaConvNet
demonstrates gains in average performance per watt across the
benchmarks and reaches higher raw performance over highly
optimized embedded GPU mappings when operating under the
same power budget.

C. Comparison With Existing FPGA Designs

This section explores the performance of the proposed
framework with respect to existing FPGA work. This is inves-
tigated by comparing with a set of state-of-the-art works that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 15

TABLE III

COMPARISON WITH EXISTING FPGA WORK ON REGULAR MODELS

TABLE IV

COMPARISON WITH EXISTING FPGA WORK ON IRREGULAR MODELS

target ConvNets from different aspects, including ConvNet-to-
FPGA toolflows [48], [49], [51]–[53], the Escher architecture
that optimizes bandwidth utilization [50], the highest perform-
ing hand-tuned VGG16 accelerator on Zynq 7045 [23], and the
throughput-optimized model-agnostic coprocessor in [59].

Table III lists the performance results for AlexNet and
VGG16 that comprise regular computational dataflows. For
AlexNet, fpgaConvNet achieves higher throughput com-
pared with DeepBurning5 [48] by 2.06× and 1.82×
on Zynq 7020 and 7045, respectively, and outperforms
DNNWEAVER5 [49] by 1.90× on Zynq 7020. Compared with
Escher [50] on Virtex-7, fpgaConvNet achieves 2.58× and
3.12× higher performance density normalized for LUTs and
DSPs, respectively (geo. mean across Zynq 7020 and 7045).

With respect to VGG16, the fpgaConvNet 7020 accelerator
achieves 1.55× higher throughput than DNNWEAVER [49].
The CNN RTL Compiler targets the Arria-10 GX1150 FPGA
on a Nallatech 385 A board. fpgaConvNet reaches 95% (7020)
and 74% (7045) of the performance density with respect
to DSPs and demonstrates 1.53× (7020) and 1.18× (7045)
higher performance density by normalizing with respect to
the clock frequency.6 An important factor to take into account
is that [53] runs on a platform with 2.75× more on-chip
memory and 3.8× higher off-chip memory bandwidth,7 which
substantially reduce the memory accesses and hence the exe-
cution time. Compared with the state-of-the-art hand-tuned
VGG16 accelerator [23] on Zynq 7045, the proposed frame-

5The reported performance results were obtained by contacting the authors.
6Arria-10 and Zynq 7045 are manufactured at different technologies,

20 and 28 nm, respectively, which affects the maximum operating clock
frequency.

7 The Nallatech 385 A and Zynq 7045 provide a peak bandwidth
of 16 and 4.2 GB/s, respectively.

work generates a design that reaches 83% of the throughput
with the advantage of a much lower development time and
effort.

Table IV presents the performance results for irregular
models. By targeting GoogLeNet, fpgaConvNet demonstrates
1.42× higher throughput than Snowflake [51] and 1.35×
higher GOp/s/DSP. Similarly, compared with the Escher
GoogLeNet accelerator [50], fpgaConvNet reaches 1.47×
and 2.59× higher GOp/s/kLUT and GOp/s/DSP, respectively.
For ResNet-152, fpgaConvNet demonstrates 2.94× higher
GOp/s/DSP than FP-DNN [52] and 92% of the GOp/s/DSP of
the CNN RTL Compiler [53] and 1.23× higher GOp/s/DSP
with normalized clock frequency, 6 while in both cases target-
ing a device with substantially lower on-chip memory capacity
and off-chip memory bandwidth.7 In [59], a coprocessor is
proposed that favors the flexible execution of different CNNs
over optimizing the hardware to the target CNN with a
reported average throughput of 129.7 and 0.046 GOp/s/DSP
on Virtex-7 485T. In contrast, by customizing the generated
hardware to the target model, the AlexNet and VGG16 designs
of fpgaConvNet on Zynq 7045 achieve 4.78× and 3.69×
higher GOp/s/DSP than [59]. Overall, the proposed framework
demonstrates the improvements in performance over existing
FPGA works that have demonstrated the state-of-the-art per-
formance in the presented benchmark ConvNets. Moreover,
to the best of our knowledge, this is the first work to have
addressed the optimized mapping of DenseNet-161 on custom
hardware, presented in the last entry of Table IV.

IX. CONCLUSION

This paper presents fpgaConvNet, a framework for the auto-
mated mapping of ConvNets on FPGAs. A novel SDF-based
methodology is proposed that enables the efficient exploration

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of the FPGA architectural design space. By casting DSE
as MOO, fpgaConvNet is able to effectively target applications
with diverse performance needs from high throughput to
low latency. Moreover, the proposed framework addresses
the mapping of state-of-the-art models with an irregular
dataflow by providing support for novel ConvNets that employ
Inception, residual, and dense blocks. Quantitative evaluation
demonstrates that fpgaConvNet matches and in several cases
outperforms the performance density of existing state-of-
the-art FPGA designs, delivers higher performance per watt
than highly optimized embedded GPU designs, and therefore
provides the infrastructure for bridging the gap between deep
learning experts and FPGAs.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, Apr. 2015, pp. 1–14.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the
gap to human-level performance in face verification,” in Proc. CVPR,
Jun. 2014, pp. 1701–1708.

[3] S. Yang, D. Maturana, and S. Scherer, “Real-time 3D scene layout from
a single image using convolutional neural networks,” in Proc. ICRA,
May 2016, pp. 2183–2189.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770–778.

[6] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[7] C. Szegedy et al., “Going deeper with convolutions,” in Proc. CVPR,
Jun. 2015, pp. 1–9.

[8] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR, 2017,
pp. 4700–4708.

[9] K. Hazelwood et al., “Applied machine learning at Facebook: A datacen-
ter infrastructure perspective,” in Proc. HPCA, Feb. 2018, pp. 620–629.

[10] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ISCA, 2017, pp. 1–12.

[11] E. Chung et al., “Serving DNNs in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20,
Mar./Apr. 2018.

[12] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future direc-
tions,” ACM Comput. Surv., vol. 51, no. 3, pp. 56:1–56:39, Jun. 2018,
doi: 10.1145/3186332.

[13] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in Proc. FCCM,
May 2016, pp. 40–47.

[14] S. I. Venieris and C.-S. Bouganis, “Latency-driven design for FPGA-
based convolutional neural networks,” in Proc. FPL, Sep. 2017, pp. 1–8.

[15] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A toolflow for
mapping diverse convolutional neural networks on embedded FPGAs,”
in Proc. NIPS Workshop Mach. Learn. Phone Other Consum. Devices
(MLPCD), 2017, pp. 1–5.

[16] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[17] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in Proc. ICANN, 2014, pp. 281–290.

[18] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in Proc. ICLR, Apr. 2015,
pp. 1–14.

[19] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. CVPR, Jun. 2015, pp. 3431–3440.

[20] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. JPROC-75, no. 9, pp. 1235–1245, Sep. 1987.

[21] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello, “Hardware accelerated convolutional neural networks for
synthetic vision systems,” in Proc. ISCAS, May/Jun. 2010, pp. 257–260.

[22] A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embedded streaming
deep neural networks accelerator with applications,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 7, pp. 1572–1583, Jul. 2017.

[23] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” in Proc. FPGA, 2016, pp. 26–35.

[24] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high per-
formance FPGA-based accelerator for large-scale convolutional neural
networks,” in Proc. FPL, Aug./Sep. 2016, pp. 1–9.

[25] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ISCA, Jun. 2016, pp. 367–379.

[26] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ISCA, Jun. 2016, pp. 1–13.

[27] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time embed-
ded scene labeling with convolutional networks,” in Proc. DAC,
Jun. 2015, pp. 1–6.

[28] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, “Convolution engine: Balancing efficiency & flexibility
in specialized computing,” in Proc. ISCA, 2013, pp. 24–35.

[29] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-
ically configurable coprocessor for convolutional neural networks,” in
Proc. ISCA, 2010, pp. 247–257.

[30] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Proc.
ICCD, Oct. 2013, pp. 13–19.

[31] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. ASPLOS, 2014, pp. 269–284.

[32] M. Peemen, R. Shi, S. Lal, B. Juurlink, B. Mesman, and
H. Corporaal, “The neuro vector engine: Flexibility to improve convo-
lutional net efficiency for wearable vision,” in Proc. DATE, Mar. 2016,
pp. 1604–1609.

[33] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ISCA, 2016, pp. 243–254.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[35] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. MM, 2014, pp. 1097–1105.

[36] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATLAB-
like environment for machine learning,” in Proc. NIPS, 2011, pp. 1–6.

[37] S. Chetlur et al., “cuDNN: Efficient primitives for deep learn-
ing,” CoRR, vol. abs/1410.0759, Oct. 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[38] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber, “Flexible, high performance convolutional neural net-
works for image classification,” in Proc. IJCAI, 2011, pp. 1237–1242.

[39] M. G. Tallada, “Coarse grain parallelization of deep neural networks,”
in Proc. PPoPP, 2016, Art. no. 1.

[40] J. S. J. Ren and L. Xu, “On vectorization of deep convolutional neural
networks for vision tasks,” in Proc. AAAI, 2015, pp. 1840–1846.

[41] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through FFTs,” in Proc. ICLR, Mar. 2014, pp. 1–9.

[42] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance
evaluation,” in Proc. ICLR, Apr. 2015, pp. 1–17.

[43] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proc. CVPR, Jun. 2016, pp. 4013–4021.

[44] S. Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding,” in Proc. ICLR,
Feb. 2016, pp. 1–14.

[45] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing
memory efficiency for deep convolutional neural networks on GPUs,”
in Proc. SC, 2016, Art. no. 54.

[46] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. FPGA, 2015, pp. 161–170.

[47] N. Suda et al., “Throughput-optimized openCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. FPGA, 2016,
pp. 16–25.

[48] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,” in Proc. DAC, Jun. 2016, pp. 1–6.

[49] H. Sharma et al., “From high-level deep neural models to FPGAs,” in
Proc. MICRO, Oct. 2016, pp. 1–12.

[50] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN accelerator
with flexible buffering to minimize off-chip transfer,” in Proc. FCCM,
Apr./May 2017, pp. 93–100.

http://dx.doi.org/10.1145/3186332

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VENIERIS AND BOUGANIS: fpgaConvNet: MAPPING REGULAR AND IRREGULAR CONVNETs 17

[51] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake:
An efficient hardware accelerator for convolutional neural networks,” in
Proc. ISCAS, May 2017, pp. 1–4.

[52] Y. Guan et al., “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc.
FCCM, Apr./May 2017, pp. 152–159.

[53] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “An automatic RTL compiler
for high-throughput FPGA implementation of diverse deep convolutional
neural networks,” in Proc. FPL, Sep. 2017, pp. 1–8.

[54] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. FPGA, 2017, pp. 65–74.

[55] A. Jiménez-Fernández et al., “A binaural neuromorphic auditory sensor
for FPGA: A spike signal processing approach,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 4, pp. 804–818, Apr. 2017.

[56] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre, “CaffePresso:
An optimized library for deep learning on embedded accelerator-based
platforms,” in Proc. CASES, Oct. 2016, pp. 1–10.

[57] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neural
networks,” in Proc. ICCAD, Nov. 2016, pp. 1–8.

[58] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” in Proc. ISCA, 2010, pp. 37–47.

[59] N. Shah, P. Chaudhari, and K. Varghese, “Runtime programmable
and memory bandwidth optimized FPGA-based coprocessor for deep
convolutional neural network,” IEEE Trans. Neural Netw. Learn. Syst.,
to be published, doi: 10.1109/TNNLS.2018.2815085.

[60] C. R. Reeves, Ed., Modern Heuristic Techniques for Combinatorial
Problems. New York, NY, USA: Wiley, 1993.

[61] V. A. Shim, K. C. Tan, and H. Tang, “Adaptive memetic computing for
evolutionary multiobjective optimization,” IEEE Trans. Cybern., vol. 45,
no. 4, pp. 610–621, Apr. 2015.

[62] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

Stylianos I. Venieris (S’16) received the M.Eng.
degree (Hons.) in electrical and electronic engineer-
ing from the Imperial College London, London,
U.K., in 2014, where he is currently pursuing the
Ph.D. degree with the Circuits and Systems Group.

His current research interests include architec-
tures and methodologies for mapping deep learning
models on reconfigurable hardware.

Christos-Savvas Bouganis (S’01–M’03–SM’16)
is currently a Reader with the Department of
Electrical and Electronic Engineering, Imperial
College London, London, U.K. He has published
over 30 research papers in peer-referred journals
and international conferences. He has contributed for
three book chapters. His current research interests
include the theory and practice of reconfigurable
computing and design automation, mainly targeting
the digital signal processing algorithms.

Dr. Bouganis is an Editorial Board Member of
the IET Computers & Digital Techniques and the Journal of Systems Archi-
tecture. He has served as the Program Chair of the IET FPGA designers’
Forum in 2007 and the General Chair of the International Symposium on
Applied Reconfigurable Computing in 2008. He is currently serving on the
program committees of many international conferences, including the Interna-
tional Conference on Field-Programmable Logic and Applications, the IEEE
International Conference on Field-Programmable Technology, the Design,
Automation and Test in Europe Conference and Exhibition, the International
Conference on Signal Processing, Pattern Recognition and Applications, and
the IFIP/IEEE International Conference on Very Large Scale Integration.

http://dx.doi.org/10.1109/TNNLS.2018.2815085

